Reactions of $(\eta^5 - C_5H_5)Fe(CO)_2[S(O)_2OR]$ (R = CH₃, C_2H_5) with $(C_2H_5)_3OPF_6$. A solution of 0.723 g (2.53 mmol) of $(\eta^5-C_5H_5)Fe$ - $(CO)_2[S(O)_2OC_2H_5]$ and 0.613 g (2.47 mmol) of $(C_2H_5)_3OPF_6$ in 35 mL of CHCl₃ was stirred for $\overline{6}$ h at 25 °C, during which time it changed color from yellow to brown. The volatiles were removed, the solid residue was extracted with 25 mL of CH₂Cl₂, and the extract was filtered. Addition of 25 mL of cyclohexane to the filtrate immediately induced the formation of yellow-brown, air-stable crystals. The volume of the solution was reduced to 30 mL, and the crystals were collected by filtration, 0.641 g (60% yield) of $[(\eta^5-C_5H_5)Fe (CO)_{2}[S(O)(OC_{2}H_{5})_{2}]]PF_{6}$ ¹H NMR $((CD_{3})_{2}CO) \tau 4.08$ (s, C₅H₅), 5.25-5.75 (m, $2CH_2$), 8.56 (t, J = 7 Hz, $2CH_3$); IR (hexachlorobutadiene) 3130 (m), 2960 (sh), 2925 (m), 2860 (m), 2085 (vs), 2050 (vs), 1420 (m) cm⁻¹; IR (Nujol) 1264 (m), 1224 (s), 1095 (w), 990 (s), 920 (s), 880 (s), 842-822 (s), 755 (m), 738 (m), 582 (m), 551 (s), 540 (sh) cm⁻¹; Λ_m (CH₃NO₂) 86.5 Ω^{-1} cm² mol⁻¹. Anal. Calcd for $C_{11}H_{15}F_6FeO_5PS$: C, 28.69; H, 3.29. Found: C, 29.09; H, 3.31. In a strictly analogous manner, reaction of $(\eta^5-C_5H_5)Fe(CO)_2[S-$

 $(O)_2OCH_3$ with $(C_2H_5)_3OPF_6$ gave $[(\eta^5-C_5H_5)Fe(CO)_2[S(O) (OC_2H_5)OCH_3]$]PF₆ as yellow, air-stable crystals in 59% yield: ¹H NMR (($(CD_3)_2CO$) τ 4.15 (s, C_5H_5), 5.2–5.7 (m, CH_2), 5.97 (s, OCH_3 , 8.57 (t, J = 7 Hz, CCH_3); IR (hexachlorobutadiene) 3095 (m), 2085 (vs), 2050 (vs) cm⁻¹; IR (Nujol) 1260 (w), 1228 (s), 1152 (w), 1102 (w), 988 (m), 920 (s), 880 (s), 840-820 (s), 770 (m), 602 (sh), 588 (s) cm⁻¹; Λ_m (CH₃NO₂) 89.6 Ω^{-1} cm² mol⁻¹

Reactions of $(\eta^5 - C_5 H_5)$ Fe(CO)(L)[S(O)₂CH₃] (L = CO, P(C₆H₅)₃) with $(C_2H_5)_3OPF_6$. Reaction between equimolar amounts of $(\eta^5 - \eta^5 - \eta^5)$ C_5H_5) Fe(CO)₂[S(O)₂CH₃] and (C₂H₅)₃OPF₆ was conducted analogously to the foregoing syntheses to afford $[(\eta^5-C_5H_5)Fe(CO)_2]$ S- $(O)(OC_2H_5)CH_3]$]PF₆ as a yellow solid in 75% yield: ¹H NMR $((CD_3)_2CO) \tau 4.33$ (br, C₅H₅), 5.66 (br, CH₂), 6.36 (br, SCH₃), 8.56 (br, CCH₃); IR (KBr) (prominent absorptions) 2077 (vs), 2040 (vs),

In a similar manner, $[(\eta^5-C_5H_5)Fe(CO)]P(C_6H_5)_3][S(O) (OC_2H_5)CH_3]$]PF₆ was prepared in 70% yield from $(\eta^5-C_5H_5)$ Fe-(CO)[P(C₆H₅)₃][S(O)₂CH₃] and (C₂H₅)₃OPF₆: ¹H NMR ((C- $D_3)_2CO$ τ 2.38 (m, 3C₆H₅), 4.76 (s, C₅H₅), 6.00 (br, CH₂), 6.55 (br, SCH₃), 8.92 (br, CCH₃); IR (KBr) (prominent absorptions) 1990 (vs), 1435 (s), 1188 (s), 1100 (s), 1008 (m), 968 (s), 888 (s), 850 (s), 842 (s) cm⁻¹; Λ_m (CH₃NO₂) 80 Ω^{-1} cm² mol⁻¹. Anal. Calcd for C₂₇H₂₈F₆FeO₃P₂S: C, 48.81; H, 4.25. Found: C, 48.98; H, 4.45.

Acknowledgment. We are grateful to the National Science Foundation for support of this research through Grant CHE-7911882.

Registry No. $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)_{2}OCH_{3}], 75111-95-4;$ $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_3], 75111-96-5; (\eta^5-C_5H_5)Fe(CO)_2-[S(O)_2OC_3H_7-1], 75111-97-6; (\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_7-2], 75111-98-7; (+)_{589}-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_17-2], 75172-30-4; (+)_{580}-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_17-2], 75172-30-4; (+)_{580}-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C$ $Mn(CO)_3(bpy)[S(O)_2OCH_3], 75111-99-8; (\eta^5-C_5H_5)Fe(CO)_2[S (O)_2OH]$, 69526-44-9; $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OD]$, 75112-00-4; Na[$(\eta^5-C_5H_5)$ Fe(CO)₂SO₃], 69363-96-8; $(\eta^5-C_5H_5)$ Fe(CO)₂[S-(O)₂N(CH₃)₂], 75112-01-5; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-OCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-DCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-DCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-DCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-DCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-[S(O)(OC₂H₅)-COH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-[S(O)(OC 75112-30-0; [(7⁵-C₅H₅)Fe(CO)₂[Š(O)(OC₂H₅)CH₃]]PF₆, 75112-32-2; $[(\eta^{5}-C_{5}H_{5})Fe(CO)[P(C_{6}H_{5})_{3}][S(O)(OC_{2}H_{5})CH_{3}]]PF_{6}, 75112-34-4;$ $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}SO_{2}]_{2}$, 58657-88-8; $(CH_{3})_{2}NH_{2}[(\eta^{5}-C_{5}H_{5})Fe (CO)_2SO_3$], 75112-35-5; $(C_2H_5)_2NH_2[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$, 75112-36-6; $(\eta^5-C_5H_5)Fe(CO)[P(C_6H_5)_3][S(O)_2CH_3]$, 31811-87-7; $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}]_{2}, 12154-95-9; K[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}SO_{2}], 65669-26-3; (\eta^{5}-C_{5}H_{5})Fe(CO)_{2}I, 12078-28-3; Mn(CO)_{3}(bpy)Cl, 14881-43-7; (\eta^{5}-C_{5}H_{5})Fe(CO)_{2}Cl, 12107-04-9; 1-C_{3}H_{7}OH, 71-23-8;$ 2-C3H7OH, 67-63-0; C2H5OH, 64-17-5; (CH3)3OPF6, 12116-05-1; CH₃OH, 67-56-1; (+)₅₈₉-2-C₈H₁₇OH, 6169-06-8; (C₂H₅)₃OPF₆, 17950-40-2; $[(\eta^5-C_5H_5)Fe(CO)_2H_2O]BF_4$, 62077-08-1; ClS(O)₂N-(CH₃)₂, 13360-57-1; CH₃OSO₂F, 421-20-5.

> Contribution from the McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210

Cationic Cyclopentadienylchromium–Nitrosyl Complexes: Synthesis and Reactions¹

FRANCIS J. REGINA and ANDREW WOJCICKI*

Received May 8, 1980

}

Reaction of η^5 -C₅H₅Cr(NO)₂Cl with AgPF₆ in CH₃CN or of η^5 -C₅H₅Cr(NO)₂CH₃ with HPF₆·(C₂H₅)₂O, also in CH₃CN, affords $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ in high yield. However, when the latter reaction takes place in ether, the allords $[\eta^{3}-C_{5}H_{5}Cr(NO)_{2}(CH_{3}CR)]rr_{5}$ in high yield. However, when the latter reaction taxes place in other, the organochromium product is $\eta^{5}-C_{5}H_{5}Cr(NO)_{2}FPF_{5}$. The complexes $[\eta^{5}-C_{5}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6}$ and $\eta^{5}-C_{5}H_{5}Cr(NO)_{2}FPF_{5}$ yield a series of cationic cyclopentadienylchromium dinitrosyls, $[\eta^{5}-C_{5}H_{5}Cr(NO)_{2}L]PF_{6}$, when treated with L (L = an aromatic amine, pyridine, and organic cyanide or isocyanide) in CH₃NO₂ at 25 °C. Treatment of $[\eta^{5}-L_{5}H_{5}Cr(NO)_{2}L]PF_{6}$ and $\eta^{5}-L_{5}H_{5}Cr(NO)_{2}L]PF_{6}$. $C_{3}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6}$ with 2,2'-bipyridine and with 1,10-phenanthroline (L-L) in CH₃NO₂ at reflux affords 17-electron complexes, $[\eta^5-C_5H_5Cr(NO)(L-L)]PF_6$. The isocyanide complex $[\eta^5-C_5H_5Cr(NO)_2(CH_3NC)]PF_6$ reacts with NaOR (R = CH₃, C₂H₅) to give the relatively unstable $\eta^5-C_5H_5Cr(NO)_2[C(OR)NCH_3]$ complexes, which on protonation with $HPF_{6}(C_{2}H_{5})_{2}O$ yield the corresponding carbene complexes $\{\eta^{5}-C_{5}H_{5}Cr(NO)_{2}[C(OR)NHCH_{3}]\}PF_{6}$. In a similar reaction, $[\eta^2-C_5H_5Cr(NO)_2(CH_3NC)]$ PF₆ was converted by action of KOH to the carbamoyl complex $\eta^5-C_5H_5Cr(NO)_2[C(O)NHCH_1]$, which on treatment with HPF₆·(C₃H₅)₂O furnished known [η^5 -C₃H₃Cr(NO)₂(CO)]PF₆. The characterization of all new complexes is described.

Introduction

The paucity of well-characterized cationic complexes $[\eta^5 - C_5 H_5 Cr(NO)_2 L] X$ (L = neutral monodentate ligand, X = uninegative ion)^{2,3} presents a striking contrast with the abundance of their isoelectronic analogues, $[\eta^5-C_5H_5Fe-$ (CO)₂L]X.^{4,5} This is further surprising in view of the existence of corresponding molybdenum and tungsten complexes, $[\eta^5 - C_5 H_5 M(NO)_2 L] X$ (M = Mo, W), for a variety of ligands L.⁶ To fill this void we set out to develop general synthetic routes to $[\eta^5 - C_5 H_5 Cr(NO)_2 L]X$. Reported here are our results

- Reger, D. L.; Coleman, C. J. Organomet. Chem. 1977, 131, 153 and (5) references cited therein.
- Stewart, R. P., Jr.; Moore, G. T. Inorg. Chem. 1975, 14, 2699.

⁽¹⁾ Based on the thesis of F.J.R. submitted in partial fulfillment of the M.S. degree, The Ohio State University, 1980.

Fischer, E. O.; Kuzel, P. Z. Anorg. Allg. Chem. 1962, 317, 226. Herberhold, M.; Smith, R. D. Angew. Chem., Int. Ed. Engl. 1979, 18, (3) 631.

Abel, E. W.; Tyfield, S. P. Adv. Organomet. Chem. 1970, 8, 117 and (4) references cited therein.

on preparation and reaction chemistry of such cationic chromium complexes.

Results and Discussion

Synthesis and Characterization of $[\eta^5-C_5H_5Cr(NO)_2L]PF_6$. Reaction of η^5 -C₅H₅Cr(NO)₂Cl with an equimolar amount of TlNO₃ in acetone at 25 °C for 24 h resulted in the precipitation of TlCl and formation of neutral η^5 -C₅H₅Cr- $(NO)_2ONO_2$ (eq 1). The same complex was obtained from

$$\eta^{5}$$
-C₅H₅Cr(NO)₂Cl + MNO₃ \rightarrow
 η^{5} -C₅H₅Cr(NO)₂ONO₂ + MCl (1)
M = Tl, Ag

 η^5 -C₅H₅Cr(NO)₂Cl and AgNO₃ in CH₃CN under comparable conditions. The nature of the organochromium product was ascertained from its very low conductance in acetone (1.0 Ω^{-1} $cm^2 mol^{-1}$) and from the position of its C_5H_5 proton resonance at τ 4.12 (in acetone solution) and of its infrared ν (NO) bands at 1814 and 1709 cm⁻¹ (in CH₃CN solution), all of which fall in the range observed for neutral complexes, η^5 -C₅H₅Cr- $(NO)_2 X$ (X = uninegative monodentate ligand) (vide infra).

By way of contrast, reaction between η^5 -C₅H₅Cr(NO)₂Cl and AgPF₆ in CH₃CN at room temperature afforded the cationic complex $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ (eq 2).

$$\eta^{5} - C_{5}H_{5}Cr(NO)_{2}Cl + AgPF_{6} + CH_{3}CN \rightarrow [\eta^{5} - C_{5}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6} + AgCl (2)$$

The same compound was obtained, in comparable yield, by treatment of η^5 -C₅H₅Cr(NO)₂CH₃ in CH₃CN with HPF₆. $(C_2H_5)_2O$ (eq 3). However, when the latter reaction was

$$\eta^{5}-C_{5}H_{5}Cr(NO)_{2}CH_{3} + HPF_{6}\cdot(C_{2}H_{5})_{2}O + CH_{3}CN \rightarrow [\eta^{5}-C_{5}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6} + CH_{4} + (C_{2}H_{5})_{2}O (3)$$

carried out in ether, a complex η^5 -C₅H₅Cr(NO)₂FPF₅, in which one fluorine probably bonds weakly to chromium, precipitated from solution (eq 4). Although this product could

$$\eta^{5} \cdot C_{5}H_{5}Cr(NO)_{2}CH_{3} + HPF_{6} \cdot (C_{2}H_{5})O \rightarrow \\ \eta^{5} \cdot C_{5}H_{5}Cr(NO)_{2}FPF_{5} + CH_{4} + (C_{2}H_{5})_{2}O \quad (4)$$

not be characterized through elemental analysis because of low stability, the proposed formulation receives support from ¹H NMR and infrared spectral data, which reveal the absence of ether. The C₅H₅ proton resonance at τ 4.02 and the infrared $\nu(NO)$ bands at 1841 and 1741 cm⁻¹ are, as shown in Table I, close to the corresponding values found for cationic complexes, $[\eta^5-C_5H_5Cr(NO)_2L]X$. This may be attributed to poor electron-donating ability of PF₆, compared to other anionic ligands, which would place considerable positive charge on chromium. The ¹⁹F NMR spectrum of η^5 -C₅H₅Cr(NO)₂FPF₅ shows a doublet resonance ($J_{P-F} = 750 \text{ Hz}$) at 4.50 ppm from CF₃CO₂H, characteristic of the PF₆⁻ ion.⁷ Essentially the same spectrum was obtained for [η^5 -C₅H₅Cr(NO)₂-(CH₃CN)]PF₆, suggesting a very labile Cr-FPF₅ bond in $\pi^5-C_5H_5Cr(NO)_2FPF_5$ and a rapid rotation of PF_6^- on the NMR time scale. Compounds similar to $\pi^5-C_5H_5Cr^-$ (NO)₂FPF₅, including Re(CO)₅FPF₅ and η^5 -C₅H₅M- $(CO)_3FPF_5$ (M = Mo, W), were recently reported by Beck.⁸

The CH₃CN ligand in $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ shows considerable lability in solution at 25 °C as demonstrated by ¹H NMR spectroscopy. Thus, the spectrum of $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ in CD₃CN shows two signals: that of C₅H₅ at τ 3.84 and of free CH₃CN at τ 7.80, indicating complete conversion to $[\eta^5-C_5H_5Cr(NO)_2-$

⁽⁸⁾ 1978, 33B, 1214.

	% C		Н%		ıfrared, cm ⁻¹		¹ H NMR, τ^c		
complex	calcd foun	d calc	d found	p(ON)a	otherb	C ₅ H,	CH ₃ , CH ₂ , NH	$\Lambda_{\mathbf{m}}, \Omega^{-1} \mathrm{cm}^2 \mathrm{mol}^{-1} a$	other measurements
η ⁵ -C ₅ H ₅ Cr(NO) ₂ FPF ₅				1841, 1741		$4.02 (s)^g$			¹⁹ F NMR ^g § 4.50
[n ⁵ -C ₅ H ₅ Cr(NO) ₂ (CH ₃ CN)]PF ₆	23.15 23.4	1 2.2	2 2.48	1862, 1757	v(CN) 2312	4.03 (s) ^g	7.60 (s, CH ₃)	101	from CF ₃ CO ₂ H
$[n^{2}-C, H, Cr(NO)]$ (C, H, CN) IPF	33.90 33.6	7 23	7 243	1851 1745	M(CN) 2278	3 00 (s)		83	$(J_{P-F} = 750 \text{ Hz})$
$[\pi^{5}-C,H,Cr(NO)_{2}(C,H,NH_{2})]PF_{6}$	31.82 31.9	6 2.9	1 2.91	1834, 1736	v(NH ₂) 3290, 3240	3.90 (s)		88	
$[n^{s}-C,H_{s}Cr(NO)_{2}(p-CH_{3}C_{6}H_{4}NH_{2})]PF_{6}$	33.58 33.7	8 3.2	9 3.29	1831, 1731	(v(ND ₂) 2479, 2401) v(NH ₂) 3301, 3267	3.87 (s)	7.70 (s, CH ₃)	93	
$[\eta^{5}-C_{5}H_{5}Cr(NO)_{2}(p-ClC_{6}H_{4}NH_{2})]PF_{6}$	29.38 29.10	0 2.4	7 2.48	1836, 1734	(v(ND ₂) 2490, 2412) v(NH ₂) 3312, 3268 ((ND) 2428 2300)	3.87 (s)		89	
[n ⁵ -C ₅ H ₅ Cr(NO) ₂ (C ₅ H ₅ N)]PF ₆	29.94 29.9	4 2.5	1 2.57	1840, 1740	(UCC2 ,004-2 (2011)4)	3.84 (s)		67	
[η ⁵ -C ₅ II ₅ Cr(NO) ₂ (4-CH ₃ C ₅ H ₄ N)]PF ₆	31.82 31.70	0 2.9	1 3.03	1834, 1734		3.80 (s)	7.50 (s, CH ₃)	85	
[η ⁵ -C, H ₅ Cr(NO) ₂ (CH ₃ NC)]PF ₆	23.15 23.1:	5 2.2	2 2.17	1856, 1756	v(CN) 2278	3.82 (s)	6.23 (t, CH, $J_{N-H} = 2.2 \text{ Hz}$)	87	
[n ⁵ -C ₅ H ₅ Cr(NO) ₂ (C ₆ H ₁₁ NC)]PF ₆	33.42 33.10	6 3.7	4 3.74	1856, 1756 ^e	v(CN) 2240	4.03 (s) h		95	
[n ⁵ -C ₅ H ₅ Cr(NO)(phen)]PF ₆	43.23 43.2	9 2.7	7 2.80	1690				67	$\mu_{aff} = 1.96 \ \mu_{B}$
[7 ⁵ -C,H,Cr(NO)(bpy)]PF	40.19 40.3	8 2.9	2 2.92	1690				72	$\mu_{off} = 1.83 \ \mu_{B}$
η^{5} -C,H,Cr(NO) ₂ [C(OCH ₃)NCH ₃]				$1795, 1690^{f}$		4.30 (s)	6.43 (s, OCH,), 7.10 (s, NCH,)		
{m ⁵ -C ₅ H ₅ Cr(NO) ₂ [C(OCH ₃)NHCH ₃]}PF ₆	24.32 24.40	0 3.0	6 2.92	1834, 1734 ^f	v(NH) 3384	3.90 (s)	5.90 (s, OCH,), 6.77 (s, NCH,)	76	
{n ⁵ -C,H,Cr(NO) ₂ [C(OC ₂ H,)NHCH ₃]}PF ₆				1845, 1740 ⁶		3.93 (s)	5.60 (q, CH ₃ , $J_{H-H} = 6.7$ Hz), 6.73 (s, NCH ₃), 8.57 (t, CCH ₃),		
η^{4} -C ₅ H ₅ Cr(NO) ₂ [C(0)NHCH ₅] [η^{5} -C ₅ H ₅ Cr(NO) ₂ (CO)]PF ₆ ^d				$1790, 1684^{f}$ 1867, 1778	ν(C=0) 1657 ^f ν(C0) 2134 ^a	4.47 (s) 3.83 (s) ^g	JH-H = 0.7 Hz) 4.73 (s, NH), 7.20 (s, CH ₃)		
^a CH ₃ NO ₂ solution except as noted. ^b K e CHCl, solution. ^f CH, solution. ^g CI	Br pellet excer D.NO. solution	ot as no n. h C	oted. ^c A	cetone-d ₆ solu- tion.	tion except as noted. At	obreviations	si s, singlet; t, triplet; q, quartet.	d Compound reported	previously. ²

Cyclopentadienylchromium-Nitrosyl Complexes

 (CD_3CN)]PF₆. The spectrum in acetone- d_6 consists of four resonances which are assigned to C_5H_5 (τ 3.84) and CH_3CN $(\tau 7.40)$ of $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$, C_5H_5 ($\tau 3.80$) of $\{\eta^5-C_5H_5Cr(NO)_2[(CD_3)_2CO]\}PF_6$, and free CH₃CN (τ 7.93). The equilibrium mixture of the two cationic species contains more than 60% of the CH_3CN complex. Finally, the spectrum of $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ in CD_3NO_2 shows only the two resonances of the dissolved complex (Table I), indicating that no ligand exchange has occurred.

The complex $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ serves as a convenient precursor of a variety of cationic complexes, $[\eta^5-C_5H_5Cr(NO)_2L]PF_6$. These conversions are accomplished in 70-85% yield by stirring a solution of $[\eta^5-C_5H_5Cr(NO)_2 (CH_3CN)$]PF₆ and excess L in CH₃NO₂ at 25 °C (eq 5).

$$[\eta^{5}-C_{5}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6} + L \xrightarrow{CH_{3}NO_{2}} [\eta^{5}-C_{5}H_{5}Cr(NO)_{2}L]PF_{6} + CH_{3}CN (5)$$

Successfully prepared in this fashion were the complexes incorporating L = an aromatic amine $(C_6H_5NH_2, p CH_3C_6H_4NH_2$, p-ClC₆H₄NH₂), pyridine (C₅H₅N, 4- $CH_3C_5H_4N$), and organic isocyanide (CH_3NC). However, attempts at introducing $L = P(C_6H_5)_3$ and $P(C_2H_5)_3$ under comparable reaction conditions resulted in complete decomposition of the η^5 -C₅H₅Cr(NO)₂ moiety.

Another synthetic route to $[\eta^5 - C_5 H_5 Cr(NO)_2 L] PF_6$ utilizes η^5 -C₅H₅Cr(NO)₂FPF₅ in conjunction with L, also in CH₃NO₂ at 25 °C (eq 6). Compared to the first-mentioned method,

$$\eta^{5} - C_{5}H_{5}Cr(NO)_{2}FPF_{5} + L \xrightarrow{CH_{3}NO_{2}} [\eta^{5} - C_{5}H_{5}Cr(NO)_{2}L]PF_{6} (6)$$
$$L = C_{6}H_{5}CN, p - CH_{3}C_{6}H_{4}NH_{2}, C_{6}H_{11}NC$$

it suffers from the somewhat lower yields of 50-60% but has the advantage of cleanly affording the cationic complexes containing ligands of a wider range of basicity, including lower than or comparable to that of CH₃CN, viz., $[\eta^5-C_5H_5Cr (NO)_2(C_6H_5CN)]PF_6$. However, the very weak bases CO and styrene failed to react with η^5 -C₅H₅Cr(NO)₂FPF₅ under similar conditions.

The new complexes $[\eta^5-C_5H_5Cr(NO)_2L]PF_6$ are stable to air in the solid state and moderately stable in solution. They were characterized by elemental analysis, molar conductance, and infrared and ¹H NMR spectroscopy, as shown in Table I. The values of Λ_m in CH₃NO₂ solution fall in the range 85–101 Ω^{-1} cm² mol⁻¹, being consistent with the presence of The infrared $\nu(NO)$ absorptions at 1:1 electrolytes.⁹ 1862-1831 and 1757-1731 cm⁻¹ are, as expected for cations $[\eta^5-C_5H_5Cr(NO)_2L]^+$, somewhat higher than those of the neutral species $\eta^5-C_5H_5Cr(NO)_2X$ (X = Cl, Br, I, NCS, NO₂, NO₃), the latter occurring at 1827-1810 and 1723-1695 cm⁻¹.6,10-12 The resonance of the C₅H₅ protons in $[\eta^5$ - $C_5H_5Cr(NO)_2L]PF_6$ at τ 3.80-4.03 experiences the usual downfield shift when compared with the corresponding signal of the above-listed neutral η^5 -C₅H₅Cr(NO)₂X, which occurs in the range τ 4.12-4.28.^{11,12} A noteworthy feature in the ¹H NMR spectrum of $[\eta^5-C_5H_5Cr(NO)_2(CH_3NC)]PF_6$ is the occurrence of the CH₃ signal as a triplet $(J_{N-H} = 2.2 \text{ Hz})$. This value agrees well with those reported in the literature for some transition metal-CH₃NC complexes.¹³⁻¹⁵

Interestingly, the amine complexes $[\eta^5-C_5H_5Cr(NO)_2L]PF_6$, where $L = C_6H_5NH_2$, $p-CH_3C_6H_4NH_2$, and $p-ClC_6H_4NH_2$, readily exchange their NH₂ protons for deuterium during storage in acetone- d_6 solution at 25 °C for 12 h. This exchange was readily ascertained by noting that the infrared $\nu(NH_2)$ bands of the dissolved complex disappeared and the corresponding $\nu(ND_2)$ bands appeared in the complex isolated from acetone- d_6 . The appropriate data are provided in Table I.

Synthesis and Characterization of $[\eta^5-C_5H_5Cr(NO)(L-$ L)]PF₆. The complex $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ undergoes substitution reaction with bidentate N-donor ligands, bpy and phen (L-L), in CH₃NO₂ at reflux to afford the 17electron products $[\eta^5-C_5H_5Cr(NO)(L-L)]PF_6$ in 70–75% yield (eq 7). These red-brown solids are air stable. Consistent with

$$[\eta^{5}-C_{5}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6} + L-L \xrightarrow{CH_{3}NO_{2}} [\eta^{5}-C_{5}H_{5}Cr(NO)(L-L)]PF_{6} + NO + CH_{3}CN (7)$$

the proposed formulations, they exhibit magnetic moments that show the presence of one unpaired electron and molar conductance that is typical of 1:1 electrolytes.9 In their infrared spectra, a single $\nu(NO)$ absorption occurs at 1690 cm⁻¹. The position of this band relates well to that at 1669 cm⁻¹ for the previously synthesized 17-electron neutral complexes η^5 - $C_5H_5Cr(NO)(L)Cl$, where $L = C_5H_5N$ and $4-CH_3C_5H_4N^{16}$ However, it surprisingly occurs at a considerably lower frequency than the corresponding absorption at 1748-1749 cm⁻¹ (in CH₂Cl₂ solution) of the 18-electron $[(\eta^5-C_5H_4CH_3)Mn-(NO)(L-L)]PF_6 (L-L = bpy, phen).^{17}$ The opposite would be predicted if the 18th electron resides in an orbital that is involved in π back-bonding with the nitrosyl ligand. For the same oxidation state of the metal, a d⁶ system (i.e., Mn(I), with the nitrosyl as NO⁺) should π back-bond more effectively than the corresponding d^5 system (i.e., Cr(I)). Thus the former should exhibit more extensive M–NO π bonding and consequently a lower value of $\nu(NO)$ than the latter.

Reactions of $[\eta^5-C_5H_5Cr(NO)_2(CH_3NC)]PF_6$ with Nucleophiles. Reactions of the title compound with several "hard" nucleophiles were carried out to establish whether attack would occur at NO or at CH₃NC. Both ligands are known to engage in such reactions, especially when present in a cationic complex.18,19

⁽⁹⁾ Geary, W. J. Coord. Chem. Rev. 1971, 7, 81.
(10) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 2, 38.
(11) King, R. B.; Bisnette, M. B. Inorg. Chem. 1964, 3, 791.
(12) Hames, B. W.; Legzdins, P.; Martin, D. T. Inorg. Chem. 1978, 17, 3644.
(13) Balch, A. L. J. Am. Chem. Soc. 1976, 98, 285.
(14) Muetterties, E. L. Inorg. Chem. 1974, 13, 495.
(15) Vamamoto, V. Vamamoti, H. J. Coord. Chem. 1977, 6, 241.

Yamamoto, Y.; Yamazaki, H. J. Coord. Chem. 1977, 6, 241. (15)

⁽¹⁶⁾ Fischer, E. O.; Strametz, H. J. Organomet. Chem. 1967, 10, 323. (17) James, T. A.; McCleverty, J. A. J. Chem. Soc. A 1970, 850.

Scheme I summarizes our results. Treatment of $[\eta^5-$ C₅H₅Cr(NO)₂(CH₃NC)]PF₆ with NaOCH₃ in CH₃OH resulted in the formation of η^5 -C₅H₅Cr(NO)₂[C(OCH₃)NCH₃]. This neutral product could not be induced to crystallize and, because of its thermal instability, was characterized only spectroscopically. The position of the infrared $\nu(NO)$ bands and the ¹H NMR spectrum, both given in Table I, support the proposed structure that derives from attack of methoxide at the isocyanide carbon.

Protonation with HPF₆·(C₂H₅)₂O of η^5 -C₅H₅Cr(NO)₂[C- $(OCH_3)NCH_3$ in CH_2Cl_2 solution occurred at the NCH₃ nitrogen to yield $\{\eta^5 - C_5 H_5 Cr(NO)_2 [C(OCH_3)NHCH_3]\} PF_6$ as a stable, crystalline solid. This methoxy(methylamino)carbone complex also resulted from reaction of $[\eta^5-C_5H_5Cr (NO)_2(CH_3NC)]PF_6$ with CH_3OH in the presence of trace amounts of NaOCH₃. However, no reaction occurred in the absence of $NaOCH_3$. Thus, methoxide must be the reactive nucleophile, and the resulting neutral complex η^5 -C₅H₅Cr- $(NO)_2[C(OCH_3)NCH_3]$ then undergoes protonation by the CH₃OH solvent.

The protonated product was characterized by elemental analysis, molar conductance, which shows it to be a 1:1 electrolyte,⁹ and infrared and ¹H NMR spectroscopy. The infrared spectrum shows a ν (NH) band at 3384 cm⁻¹ and two $\nu(NO)$ absorptions in the range appropriate for these cationic dinitrosyl complexes. In the ¹H NMR spectrum, the resonances of the C₅H₅, OCH₃, and NCH₃ groups are, as expected, downfield from the corresponding signals of neutral η^5 - $C_5H_5Cr(NO)_2[C(OCH_3)NCH_3]$

Similarly prepared, by using NaOC₂H₅ in C₂H₅OH followed by protonation, was the ethoxy analogue of the afore- $C_{5}H_{5}Cr(NO)_{2}[C(OC_{2}H_{5})NHCH_{3}]]PF_{6}$ could not be induced to crystallize and was characterized only spectroscopically (Table I).

Treatment of $[\eta^5-C_5H_5Cr(NO)_2(CH_3NC)]PF_6$ with KOH in CH₃CN at 25 °C afforded unstable η^5 -C₅H₅Cr(NO)₂[C-(O)NHCH₃], which was characterized spectroscopically in solution. This carbamoyl complex results from attack of hydroxide at the isocyanide carbon, followed by a tautomeric proton shift to the more basic nitrogen. The proposed formulation receives support from the infrared $\nu(NO)$ absorptions at 1790 and 1684 cm⁻¹ and the ν (C==O) band at 1657 cm⁻¹. The ¹H NMR spectrum shows all of the hydrogens at the expected positions and with the appropriate intensities.

Addition of $HPF_{6}(C_2H_5)_2O$ to a solution of the carbamoyl complex in CH₃NO₂ resulted in the formation of $[\eta^5$ - $C_5H_5Cr(NO)_2(CO)]PF_6$, which had previously been prepared, via a different route, by Fischer.² The infrared spectroscopic data in Table I match well with the literature values.

The carbonyl ligand in $[\eta^5-C_5H_5Cr(NO)_2(CO)]PF_6$ undergoes substitution by CH₃CN to yield $[\eta^5-C_5H_5Cr(NO)_2 (CH_3CN)$]PF₆. Accordingly, a solution of $[\eta^5-C_5H_5Cr (NO)_2(CO)]PF_6$ and a 12-fold excess of CH₃CN in CD₃NO₂ in a capped ¹H NMR tube showed a higher than 80% conversion to $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ in 84 h. By comparison, the corresponding $[\eta^5-C_5H_5M(NO)_2(CO)]PF_6$ (M = Mo, W) complexes react very rapidly with CH₃CN at room temperature also to give $[\eta^5 - C_5 H_5 M(NO)_2(CH_3 CN)]PF_6$.

The foregoing reactions (Scheme I) parallel closely those reported for cationic square-planar platinum(II) isocyanide complexes, $[Pt(PR_3)_2(CH_3NC)_2]X_2^{2,20,21}$ However, the

- Bottomley, F. Acc. Chem. Res. 1978, 11, 158 and references cited (18) therein.
- (19)Treichel, P. M. Adv. Organomet. Chem. 1973, 11, 21 and references cited therein. Treichel, P. M.; Knebel, W. J.; Hess, R. W. J. Am. Chem. Soc. 1971,
- (20)93. 5424
- (21) Treichel, P. M.; Knebel, W. J. Inorg. Chem. 1972, 11, 1285.

platinum compounds also undergo similar nucleophilic attack by SH⁻ and C₆H₅NH⁻. Attempts at reaction of $[\eta^5$ - $C_5H_5Cr(NO)_2(CH_3NC)]PF_6$ with NaHS in CH₃CN and KNHC₆H₅ in THF at 25 °C resulted in complete destruction of the η^5 -C₅H₅Cr(NO)₂ moiety. A similar decomposition occurred when $[\eta^5 - C_5 H_5 Cr(NO)_2(CH_3NC)]PF_6$ was treated with $(CH_3)_2NH$ in CH_3CN at room temperature. It is not known whether these decomposition reactions proceed by attack of the nucleophile at ligated NO or CH_3NC .

Experimental Section

General Procedures and Measurements. All reactions and manipulations were routinely carried out under purified nitrogen. Analyses were done by Galbraith Laboratories, Inc., Knoxville, TN.

¹H and ¹⁹F NMR spectra were recorded on a Varian Associates EM360L spectrometer using Me₄Si as an internal reference for the former and CF₃CO₂H as an external reference for the latter. Infrared spectra were obtained on a Perkin-Elmer Model 337 spectrophotometer and were calibrated with polystyrene. Molar conductance was measured on ca. 10^{-3} M solutions by using a Lab-Line No. 11200 beaker-type conductivity cell in conjunction with an Industrial Instruments, Inc., Model RC 16B2 conductivity bridge. Paramagnetic susceptibilities were determined by the method of Evans²² on ca. 10⁻³ M solutions in CH₃NO₂. Mass spectra were recorded on a DuPont Instruments 21-490 spectrometer connected to a Perkin-Elmer 990 gas chromatograph.

Materials. All solvents were of reagent grade quality and were purified further by the methods described by Perrin et al.²³ prior to use. Commercially procured reagents were used as received except for p-CH₃C₆H₄NH₂ (30 °C), p-ClC₆H₄NH₂ (50 °C), 1,10phenanthroline (phen) (50 °C), and 2,2'-bipyridine (bpy) (50 °C) which were sublimed in vacuo at the indicated temperatures, for C₆H₅NH₂ (65 °C/18 torr), C₅H₅N (115.6 °C/760 torr), and 4- $CH_3C_5H_4N$ (145 °C/760 torr) which were dried over KOH and distilled as indicated, and for C₆H₅CN which was dried over P₄O₁₀ and distilled at 69 °C/10 torr.

Literature procedures were employed to synthesize CH_3NC ,²⁴ $C_6H_{11}NC$,²⁵ η^3 - $C_5H_5Cr(NO)_2Cl$,²⁶ and η^5 - $C_5H_5Cr(NO)_2CH_3$.²⁷

Preparation of $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$. A. By Reaction of η^5 -C₅H₅Cr(NO)₂Cl with AgPF₆. A solution containing 1.67 g (6.6 mmol) of AgPF₆ in 75 mL of CH₃CN was treated with 1.40 g (6.6 mmol) of η^5 -C₅H₅Cr(NO)₂Cl, and the resulting mixture was stirred at 25 °C for 12 h. The green solution was filtered, the solvent was removed from the filtrate, the residual oil was extracted with 3×20 mL of CHCl₃, and the brown extracts were discarded. The residue was dried in vacuo and redissolved in CH₃CN, and this solution was filtered and concentrated to 5-7 mL. Chloroform was added, and the resulting solution was stored at -78 °C for 4 h. Crystalline $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ (1.85 g, 77% yield) was collected on a frit, washed with CHCl₃, and dried in vacuo.

B. By Reaction of $\eta^5 C_5 H_5 Cr(NO)_2 CH_3$ with HPF₆·(C₂H₅)₂O in To a solution containing 0.50 g (2.6 mmol) of η^{5} -CH₁CN. $C_5H_5Cr(NO)_2CH_3$ in 50 mL of CH₃CN was added 0.50 mL (3.0 mmol) of $HPF_{6}(C_2H_5)_2O$, and the resulting mixture was stirred at 25 °C for 20 min. A mass spectrometric analysis of collected gases showed the presence of CH₄. The green solution was filtered, concentrated to 1-2 mL by rotary evaporation, and treated with 20 mL of CHCl₃. Storage at -78 °C for 4 h induced crystallization of 0.75 g (80% yield) of $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆, which was collected on a frit, washed with liberal portions of CHCl₃, and dried in vacuo.

Preparation of η^5 -C₅H₅Cr(NO)₂FPF₅. A solution containing 0.10 g (0.52 mmol) of η^5 -C₅H₅Cr(NO)₂CH₃ in 25 mL of ether in a 100-mL round-bottom flask equipped with a nitrogen inlet and a Schlenk filter tube was treated with 0.10 mL (0.60 mmol) of $HPF_{6}(C_2H_5)_2O$. the reaction mixture was stirred at 25 °C for 6 h, during which time a green precipitate formed. This solid was collected on a frit, washed

- Evans, D. F. J. Chem. Soc. 1959, 2003. (22)
- (23) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. "Purification of Laboratory Chemicals"; Pergamon Press: Oxford, England, 1966.
 (24) Casanova, J., Jr.; Schuster, R. E.; Werner, N. D. J. Chem. Soc. 1963,
- 4280
- (25) Hertler, W. R.; Corey, E. J. J. Org. Chem. 1958, 23, 1221.
- (26) King, R. B. "Organometallic Syntheses"; Academic Press: New York, 1965; Vol. 1, p 161.
 (27) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 3, 104.

with liberal portions of ether, and dried in vacuo. A mass spectrometric analysis of gases above the reaction mixture showed the presence of CH_4 .

Preparation of $[\eta^5-C_5H_5Cr(NO)_2L]PF_6$. A. By Reaction of $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ with L (L = $C_6H_5NH_2$, p-CH₃C₆H₄NH₂, p-CIC₆H₄NH₂, C₅H₅N, 4-CH₃C₅H₄N, CH₃NC). A solution of 0.2–1.0 g (0.55–2.7 mmol) of $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ and a twofold to threefold excess of L in 25–75 mL of CH₃NO₂ was stirred at 25 °C for ca. 12 h. Solvent was removed from the reaction mixture, the residue was dissolved in a minimum amount of acetone, and the resulting solution was filtered and treated with 20–30 mL of CHCl₃. Storage at -78 °C for 4–12 h afforded $[\eta^5-C_5H_5Cr(NO)_2L]PF_6$ as green crystals which were collected on a frit, washed with CHCl₃, and dried in vacuo. The yield was 70–85%.

B. By Reaction of η^5 -C₅H₅Cr(NO)₂FPF₅ with L (L = C₆H₅CN, *p*-CH₃C₆H₄NH₂, C₆H₁₁NC). Freshly prepared η^5 -C₅H₅Cr(NO)₂FPF₅ was dissolved in CH₃NO₂, and the resulting solution was treated with excess L and stirred at 25 °C for 12 h. The rest of the procedure was identical with that of method A. The yield was 50-60%.

Preparation of $[\eta^5-C_5H_5Cr(NO)(L-L)]PF_6$ (L-L = phen, bpy). A solution of 0.30 g (0.82 mmol) of $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ and a slight excess of L-L in 30 mL of CH₃NO₂ was kept at reflux for 4 h, during which time it changed from green to red-brown. Solvent was removed at 25 °C, the residue was dissolved in acetone, and the resulting solution was filtered and concentrated to ca. 5 mL. Treatment with 20 mL of CHCl₃, followed by slow evaporation of the solvent, afforded a red-brown precipitate which was collected on a frit, washed with CHCl₃, and dried in vacuo. The yield was 70-75%.

Preparation of η^5 -C₃H₅Cr(NO)₂[C(OCH₃)NCH₃]. To a solution containing 0.20 g (0.55 mmol) of $[\eta^5$ -C₃H₅Cr(NO)₂(CH₃NC)]PF₆ in 20 mL of CH₃OH was added 1.0 mL of 1.0 M (1.0 mmol) NaOCH₃ in CH₃OH. The mixture was stirred at 25 °C for 12 h, during which time it changed from green to gold. Solvent was removed, and the residue was cooled to -78 °C to prevent decomposition. It was then extracted with 10-mL portions of CH₂Cl₂ at 25 °C until the extracts became colorless. The extracts were combined, filtered, and freed of solvent to afford the title complex as a gold oil. Attempts at crystallization at ambient temperatures proved unsuccessful, owing to thermal instability of the complex.

Preparation of $\{\eta^5 \cdot C_5 H_5 Cr(NO)_2 [C(OCH_3)NHCH_3] PF_6$. The filtered extracts containing $\eta^5 \cdot C_5 H_5 Cr(NO)_2 [C(OCH_3)NCH_3]$ from the preceding preparation were treated with 0.10 mL (0.60 mmol) of HPF_6 \cdot (C_2H_3)_2O as the color changed from gold to green. The resulting solution was filtered and concentrated, and cyclohexane was

added to induce precipitation of a green solid. The crude product was recrystallized from acetone-ether. The yield was 0.18 g (83% on the basis of $[\eta^5-C_5H_5Cr(NO)_2(CH_3NC)]PF_6$).

Preparation of $[\eta^5-C_5H_5Cr(NO)_2[C(OC_2H_5)NHCH_3]]PF_6$. This complex was prepared by a procedure strictly analogous to that for its OCH₃ analogue by using C₂H₅OH and NaOC₂H₅ in place of CH₃OH and NaOCH₃. The product was isolated as a green oil which could not be induced to crystallize.

Preparation of η^{5} -C₅H₃Cr(NO)₂[C(O)NHCH₃]. To a solution containing 0.20 g (0.55 mmol) of $[\eta^{5}$ -C₃H₃Cr(NO)₂(CH₃NC)]PF₆ in 30 mL of CH₃CN was added 10 mL of aqueous 0.10 M (1.0 mmol) KOH. The mixture was stirred at 25 °C for 1 h, during which time it changed from green to red-brown. Solvent was removed, and the residue was cooled to -78 °C and extracted with CH₂Cl₂ at 25 °C until the extracts became colorless. The extracts were combined, filtered, and freed of solvent to yield a red-brown powder, which was spectroscopically characterized as the title complex. The product decomposed during attempts at crystallization at ambient temperatures.

Preparation of $[\eta^5-C_3H_3Cr(NO)_2(CO)]PF_6$. The product from the preceding reaction was dissolved in 15 mL of CH₃NO₂, and the resulting solution was treated with 0.20 mL (1.2 mmol) of HPF₆· (C₂H₅)₂O and stirred at 25 °C for 1 h as the color changed from red to green. Solvent was removed, and the residue was washed with 15 mL of H₂O and dried in vacuo. The crude product was recrystallized from acetone-ether to yield 0.04 g (20% on the basis of $[\eta^5-C_3H_5Cr(NO)_2(CH_3NC)]PF_6$) of $[\eta^5-C_3H_5Cr(NO)_2(CO)]PF_6$.

Acknowledgment. We are grateful to the National Science Foundation for support of this ressearch through Grant CHE-7911882.

Registry No. $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6, 74924-59-7; \eta^5-C_5H_5Cr(NO)_2FPF_5, 74924-60-0; [\eta^3-C_3H_5Cr(NO)_2(C_6H_3NH_2)]PF_6, 74924-62-2; [\eta^5-C_5H_5Cr(NO)_2(p-CH_3C_6H_4NH_2)]PF_6, 74924-62-2; [\eta^5-C_5H_5Cr(NO)_2(p-CH_3C_6H_4NH_2)]PF_6, 74924-62-2; [\eta^5-C_5H_5Cr(NO)_2(p-CL_6H_4NH_2)]PF_6, 74924-66-6; [\eta^5-C_5H_5Cr(NO)_2(p-CL_6H_4NH_2)]PF_6, 74924-68-8; \eta^5-C_5H_5Cr(NO)_2[C(OCH_3)NCH_3], 74924-69-9; [\eta^5-C_5H_5Cr(NO)_2[C(OCH_3)NHCH_3]]PF_6, 74924-71-3; [\eta^5-C_5H_5Cr(NO)_2[C(OCH_3)NHCH_3]]PF_6, 74924-71-3; [\eta^5-C_5H_5Cr(NO)_2[C(OCH_3)NHCH_3]]PF_6, 74924-73-5; \eta^5-C_5H_5Cr(NO)_2[C(OC)PF_6, 69439-82-3; [\eta^5-C_5H_5Cr(NO)_2(C_6H_{11}NC)]PF_6, 74924-76-8; [\eta^5-C_5H_5Cr(NO)(bpen)]PF_6, 74924-76-6; [\eta^5-C_5H_5Cr(NO)(bpy)]PF_6, 74924-80-4; \eta^5-C_5H_5Cr(NO)_2(C_6H_5CN)]PF_6, 74924-82-6; [\eta^5-C_5H_5Cr(NO)_2CH_3, 53522-59-1; [\eta^5-C_5H_5Cr(NO)_2(C_6H_5CN)]PF_6, 74924-82-6; [\eta^5-C_5H_5Cr(NO)_2(CH_3NC)]PF_6, 74924-84-8.$

Contribution from the Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadakami, Suita-shi, Osaka-fu 565, Japan

Crystal Structure of Europium(II) Bromoborate

KEN-ICHI MACHIDA, GIN-YA ADACHI,* NORITAKE YASUOKA, NOBUTAMI KASAI, and JIRO SHIOKAWA

Received March 18, 1980

Needlelike single crystals of $Eu_2B_3O_9Br$ were grown from the molten sample containing a large excess of $EuBr_2$ as a flux. The crystal structure was determined from three-dimensional X-ray diffraction data (R = 0.047 for 1979 observed reflections, with anisotropic thermal parameters for Eu and Br atoms). The bromoborate $Eu_2B_3O_9Br$ is isostructural with the Ca analogue. The crystal belongs to the orthorhombic (pseudotetragonal) system, of space group *Pnn*2, with four formula units in a cell of dimensions a = 11.503 (3), b = 11.382 (3), and c = 6.484 (2) Å. The structure consists of a three-dimensional $(B_5O_9)_{\infty}$ network, in which B_5O_{12} groups of three BO_4 tetrahedra and two BO_3 triangles are linked together by sharing cornered oxygens. The Eu and Br atoms are located in tunnels of the $(B_5O_9)_{\infty}$ network extending along the c axis. Each Eu atom is surrounded by two Br atoms and seven O atoms with interatomic distances from 3.009 to 3.093 Å and from 2.526 to 3.061 Å, respectively.

Introduction

Divalent europium (Eu²⁺) containing compounds have been investigated because of their magnetic¹⁻³ and spectroscopic⁴

⁽¹⁾ Matthias, B. T.; Bozorth, R. M.; Van Vleck, J. H. Phys. Rev. Lett. 1961, 7, 1960.

⁽²⁾ Suits, J. C.; Lee, K. J. Appl. Phys. 1971, 42, 3258.

⁽³⁾ Fan, G.; Burn, R. A. J. Appl. Phys. 1971, 42, 3458.

 ^{(4) (}a) Blasse, G.; Bril, A. Philips Tech. Rev. 1970, 31, 304. (b) Blasse, G. Struct. Bonding (Berlin) 1976, 26, 43-79.