Reactions of $(\eta^5$ **-C₅H₅)Fe(CO)₂[S(O)₂OR] (R = CH₃, C₂H₅) with** $(C_2H_5)_3$ OPF₆. A solution of 0.723 g (2.53 mmol) of $(\eta^5-C_5H_5)$ Fe- $(CO)_2$ [S(O)₂OC₂H₅] and 0.613 **g** (2.47 mmol) of $(C_2H_5)_3$ OPF₆ in 35 mL of CHCl₃ was stirred for 6 h at 25 °C, during which time it changed color from yellow to brown. The volatiles were removed, the solid residue was extracted with 25 mL of CH_2Cl_2 , and the extract was filtered. Addition of 25 mL of cyclohexane to the filtrate immediately induced the formation of yellow-brown, air-stable crystals. The volume of the solution was reduced to 30 mL, and the crystals were collected by filtration, 0.641 **g** (60% yield) of $[(\eta^5 \text{-} C_5H_5)Fe$ - $(CO)_2[S(O)(OC_2H_3)_2]$]PF₆: ¹H NMR $((CD_3)_2CO)$ *T* 4.08 (s, C_3H_5), 5.25-5.75 (m, 2CH₂), 8.56 (t, $J = 7$ Hz, 2CH₃); IR (hexachlorobutadiene) 3130 (m), 2960 (sh), 2925 (m), 2860 (m), 2085 (vs), 2050 (vs), 1420 (m) cm-I; IR (Nujol) 1264 (m), 1224 (s), 1095 (w), 990 (s), 920 (s), 880 (s), 842-822 (s), 755 (m), 738 (m), 582 (m), 551 (s), 540 (sh) cm⁻¹; Λ_m (CH₃NO₂) 86.5 Ω^{-1} cm² mol⁻¹. Anal. Calcd for $C_{11}H_{15}F_6FeO_5PS$: C, 28.69; H, 3.29. Found: C, 29.09; H, 3.31.

In a strictly analogous manner, reaction of $(\eta^5\text{-C}_5H_5)$ Fe(CO)₂[S (O)₂OCH₃] with $(C_2H_5)_3$ OPF₆ gave $[(\eta^5 \cdot C_5H_5)Fe(CO)_2[S(O)]$ $(OC₂H₅)OCH₃]$]PF₆ as yellow, air-stable crystals in 59% yield: ¹H NMR $((CD_3)_2CO)$ τ 4.15 (s, C₅H₅), 5.2-5.7 (m, CH₂), 5.97 (s, OCH₃), 8.57 (t, $J = 7$ Hz, CCH₃); IR (hexachlorobutadiene) 3095 (m), 2085 (vs), 2050 (vs) cm-I; IR (Nujol) 1260 (w), 1228 (s), 1152 (w), 1102 (w), 988 (m), 920 (s), 880 (s), 840-820 (s), 770 (m), 602 (sh), 588 (s) cm⁻¹; Λ_{m} (CH₃NO₂) 89.6 Ω^{-1} cm² mol⁻¹

Reactions of $(\eta^5$ **-C₅H₅)Fe(CO)(L)[S(O)₂CH₃] (L = CO, P(C₆H₅)₃)** with $(C_2H_5)_3$ OPF₆. Reaction between equimolar amounts of $(\eta^5$ - C_5H_5)Fe(CO)₂[S(O)₂CH₃] and (C₂H₅)₃OPF₆ was conducted analogously to the foregoing syntheses to afford $[(\eta^5-C_5H_5)Fe(CO)_2[S (0)(OC₂H₃)CH₃$] PF₆ as a yellow solid in 75% yield: ¹H NMR $((CD₃)₂CO)$ τ 4.33 (br, C₅H₅), 5.66 (br, CH₂), 6.36 (br, SCH₃), 8.56 $(br, \overrightarrow{CCH}_3)$; IR (KBr) (prominent absorptions) 2077 (vs), 2040 (vs),

In a similar manner, $[(\eta^5-C_5H_5)Fe(CO)[P(C_6H_5)_3][S(O)]$ $(OC₂H₅)CH₃]PF₆$ was prepared in 70% yield from $(\eta⁵-C₅H₅)Fe (CO)[P(C_6H_5)_3][S(O)_2CH_3]$ and $(C_2H_5)_3OPF_6$: ¹H NMR ((C-D₃)₂CO) τ 2.38 (m, 3C₆H₅), 4.76 (s, C₅H₅), 6.00 (br, CH₂), 6.55 (br, $SCH₃$), 8.92 (br, $CCH₃$); IR (KBr) (prominent absorptions) 1990 (vs), 1435 **(s),** 1188 (s), 1100 (s), 1008 (m), 968 (s), 888 (s), 850 (s), 842 (s) cm⁻¹; Λ_m (CH₃NO₂) 80 Ω^{-1} cm² mol⁻¹. Anal. Calcd for $C_{27}H_{28}F_{6}FeO_{3}P_{2}S$: C, 48.81; H, 4.25. Found: C, 48.98; H, 4.45.

Acknowledgment. We are grateful to the National Science Foundation for support of this research through Grant CHE-7911882.

Registry No. $(\eta^5 \text{-} C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$, 75111-95-4; $(\eta^5$ -C₅H₅)Fe(CO)₂[S(O)₂OC₂H₅], 75111-96-5; (η^5 -C₅H₅)Fe(CO)₂- $\left[S(O)_2 O C_3 H_{7}$ -1], 75111-97-6; (η ⁵-C₃H₅)Fe(CO)₂[S(O)₂OC₃H₇-2], 75 11 1-98-7; **(+)ss9-(q5-C5H5)Fe(CO)z[S(0)20C~H17-2],** 75 172-30-4; **Mn(CO)₃(bpy)[S(O)₂OCH₃], 75111-99-8; (** η **⁵-C₅H₅)Fe(CO)₂[S-** $(O)_2OH$], 69526-44-9; $(\eta^5-C_3H_5)Fe(CO)_2(S(O)_2OD)$, 75112-00-4; $Na[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$, 69363-96-8; $(\eta^5-C_5H_5)Fe(CO)_2[S (0)_2N(CH_3)_2$], 75112-01-5; $[(\eta^5-C_5H_5)Fe(CO)_2[S(O)(OC_2H_5)-]$ 75 1 12-30-0; **[(~5-C5H5)Fe(CO)z[S(0)(OCzH,)CH3]]PF6,** 751 12-32-2; $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]_2$, 58657-88-8; $(CH_3)_2NH_2[(\eta^5-C_5H_5)Fe (CO)_2SO_3$], 75112-35-5; $(C_2H_5)_2NH_2[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$, 75112-36-6; $(\eta^5$ -C₅H₅)Fe(CO)[P(C₆H₅)₃][S(O)₂CH₃], 31811-87-7; $[(\eta^5 \text{-} C_5 H_5) \text{Fe(CO)}_2]_2$, 12154-95-9; $K[(\eta^5 \text{-} C_5 H_5) \text{Fe(CO)}_2 \text{SO}_2]$, 65669-26-3; $(\eta^5$ -C₅H₅)Fe(CO)₂I, 12078-28-3; Mn(CO)₃(bpy)Cl, 14881-43-7; (η^5 -C₃H₃)Fe(CO)₂Cl, 12107-04-9; 1-C₃H₇OH, 71-23-8; 17950-40-2; $[(\eta^5-C_5H_5)Fe(CO)_2H_2O]BF_4$, 62077-08-1; CIS(O)₂N- $[OCH_3]$]PF₆, 75112-03-7; $[(\eta^5 \text{-} C_5H_5)Fe(CO)_2[S(O)(OC_2H_5)_2]]PF_6$ $[(\eta^5-C_5H_5)Fe(CO)[P(C_6H_5)_3][S(O)(OC_2H_5)CH_3]]PF_6, 75112-34-4;$ 2-C₃H₇OH, 67-63-0; C₂H₃OH, 64-17-5; (CH₃)₃OPF₆, 12116-05-1; CH₃OH, 67-56-1; (+)₅₈₉-2-C₈H₁₇OH, 6169-06-8; (C₂H₅)₃OPF₆, $(CH_3)_2$, 13360-57-1; CH₃OSO₂F, 421-20-5.

> Contribution from the McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210

Cationic Cyclopentadienylchromium-Nitrosyl Complexes: Synthesis and Reactions'

FRANCIS J. REGINA and ANDREW WOJCICKI*

Received May 8, *I980*

 $\}$

Reaction of η^5 -C₅H₅Cr(NO)₂Cl with AgPF₆ in CH₃CN or of η^5 -C₅H₅Cr(NO)₂CH₃ with HPF₆·(C₂H₅)₂O, also in CH₃CN, affords **[s5-C5H5Cr(N0)2(CH3CN)]PF6** in high yield. However, when the latter reaction takes place in ether, the organochromium product is η^5 -C₅H₅Cr(NO)₂FPF₅. The complexes $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆ and η^5 -C₅H₅Cr-(NO)₂FPF₅ yield a series of cationic cyclopentadienylchromium dinitrosyls, $[\eta^5$ -C₅H₅Cr(NO)₂L]PF₆, when treated with L (L = an aromatic amine, pyridine, and organic cyanide or isocyanide) in CH₃NO₂ at 25 °C. Treatment of [n^5 - $C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ with 2,2'-bipyridine and with 1,10-phenanthroline (L-L) in CH₃NO₂ at reflux affords 17-electron complexes, $\{\eta^5$ -C₃H₃Cr(NO)(L-L)]PF₆. The isocyanide complex $\{\eta^5$ -C₃H₃Cr(NO)₂(CH₃NC)]PF₆ reacts with NaOR (R = CH₃, C₂H₃) to give the relatively unstable η^5 -C₃H₃Cr(NO)₂[C(OR)NCH₃] co $HPF₆(C₂H₅)₂O$ yield the corresponding carbene complexes $(n⁵-C₅H₅Cr(NO)₂[C(OR)NHCH₃]]PF₆.$ In a similar reaction, $[\eta^3-C_5H_5Cr(NO)_2(CH_3NC)]PF_6$ was converted by action of KOH to the carbamoyl complex $\eta^5-C_5H_5Cr(NO)_5[CO]NHCH_3]$, which on treatment with $HPF_6(C_3H_5)_2O$ furnished known $\{ \eta^5-C_3H_3Cr(NO)_2(CO)\}PF_6$. The characterization of all new complexes is described.

Introduction

The paucity of well-characterized cationic complexes $[\eta^5$ -C₅H₅Cr(NO)₂L]X (L = neutral monodentate ligand, X = uninegative ion)^{2,3} presents a striking contrast with the abundance of their isoelectronic analogues, $[\eta^5$ -C₅H₅Fe $(CO)₂L]X^{4,5}$ This is further surprising in view of the existence of corresponding molybdenum and tungsten complexes, $[\eta^5$ -C₅H₅M(NO)₂L]X (M = Mo, W), for a variety of ligands L.⁶ To fill this void we set out to develop general synthetic routes to $[\eta^5$ -C₅H₅Cr(NO)₂L]X. Reported here are our results

- **(5)** Reger, D. L.; Coleman, C. *J. Organomet. Chem.* **1977,** *131,* **153** and references cited therein.
- *(6)* Stewart, R. P., Jr.; Moore, G. T. *Inorg. Chem.* **1975,** *14, 2699.*

⁽¹⁾ Based **on** the thesis of F.J.R. submitted in partial fulfillment of the M.S. degree, The Ohio State University, *1980.*

⁽²⁾ Fischer, E. *0.;* Kuzel, P. *Z. Anorg. AIIg. Chem.* **1962,** *317, 226.* (3) Herberhold, M.; Smith, R. D. *Angew. Chem., In?. Ed. Engl.* **1979,18,** 631.

⁽⁴⁾ Abel, E. **W.;** Tyfield, **S.** P. *Adu. Organomet. Chem.* **1970,8, 117** and references cited therein.

on preparation and reaction chemistry of such cationic chromium complexes.

Results and Discussion

Synthesis and Characterization of $[\eta^5$ **-C₅H₅Cr(NO)₂L]PF₆.** Reaction of η^5 -C₅H₅Cr(NO)₂Cl with an equimolar amount of TlNO₃ in acetone at 25 \degree C for 24 h resulted in the precipitation of TlCl and formation of neutral η^5 -C₅H₅Cr-

(NO)₂ONO₂ (eq 1). The same complex was obtained from
\n
$$
\eta^5-C_5H_5Cr(NO)_2Cl + MNO_3 \rightarrow
$$
\n
$$
\eta^5-C_5H_5Cr(NO)_2CNO_2 + MCl (1)
$$
\n
$$
M = Tl, Ag
$$

 η^5 -C₅H₅Cr(NO)₂Cl and AgNO₃ in CH₃CN under comparable conditions. The nature of the organochromium product was ascertained from its very low conductance in acetone (1.0 Ω^{-1}) $\text{cm}^2 \text{ mol}^{-1}$) and from the position of its C_5H_5 proton resonance at τ 4.12 (in acetone solution) and of its infrared $\nu(NO)$ bands at 1814 and 1709 cm^{-1} (in CH₃CN solution), all of which fall in the range observed for neutral complexes, η^5 -C₅H₅Cr- $(NO)₂X (X = uninegative monodentate ligand)$ (vide infra).

By way of contrast, reaction between η^5 -C₅H₅Cr(NO)₂Cl and AgPF₆ in CH₃CN at room temperature afforded the

cationic complex
$$
[\eta^5-C_5H_5Cr(NO)_2CH_3CN)]PF_6
$$
 (eq 2).
\n $\eta^5-C_5H_5Cr(NO)_2Cl + AgPF_6 + CH_3CN \rightarrow$
\n $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6 + AgCl$ (2)

The same compound was obtained, in comparable yield, by treatment of η^5 -C₅H₅Cr(NO)₂CH₃ in CH₃CN with HPF₆. $(C_2H_5)_2O$ (eq 3). However, when the latter reaction was
 η^5 -C₅H₅Cr(NO)₂CH₃ + HPF₆·(C₂H₅)₂O + CH₃CN \rightarrow

$$
\eta^{5} \text{-} C_{5}H_{5}Cr(NO)_{2}CH_{3} + HPF_{6} \cdot (C_{2}H_{5})_{2}O + CH_{3}CN \rightarrow
$$

[$\eta^{5} \text{-} C_{5}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6} + CH_{4} + (C_{2}H_{5})_{2}O$ (3)

carried out in ether, a complex η^5 -C₅H₅Cr(NO)₂FPF₅, in which one fluorine probably bonds weakly to chromium,

$$
η5-C5H5Cr(NO)2CH3 + HPF6·(C2H5)O →
$$

\n
$$
η5-C5H5Cr(NO)2CH3 + HPF6·(C2H5)O →
$$

\n
$$
η5-C5H5Cr(NO)2FPF5 + CH4 + (C2H5)2O (4)
$$

not be characterized through elemental analysis because of low stability, the proposed formulation receives support from 'H NMR and infrared spectral data, which reveal the absence of ether. The C_5H_5 proton resonance at τ 4.02 and the infrared $\nu(NO)$ bands at 1841 and 1741 cm⁻¹ are, as shown in Table I, close to the corresponding values found for cationic complexes, $[\eta^5$ -C₅H₅Cr(NO)₂L]X. This may be attributed to poor electron-donating ability of PF_6^- , compared to other anionic ligands, which would place considerable positive charge on chromium. The ¹⁹F NMR spectrum of η^5 -C₅H₅Cr(NO)₂FPF₅ shows a doublet resonance $(J_{P-F} = 750 \text{ Hz})$ at 4.50 ppm from $CF₃CO₂H$, characteristic of the $PF₆⁻$ ion.⁷ Essentially the same spectrum was obtained for $[\eta^5$ -C₅H₅Cr(NO)₂- (CH_3CN)]PF₆, suggesting a very labile Cr-FPF₅ bond in η^5 -C₅H₅Cr(NO)₂FPF₅ and a rapid rotation of PF₆⁻ on the NMR time scale. Compounds similar to η^5 -C₅H₅Cr- $(NO)_2$ FPF₅, including Re(CO)₅FPF₅ and η^5 -C₅H₅M- $(CO)_{3}$ FPF₅ (M = Mo, W), were recently reported by Beck.⁸

The CH₃CN ligand in $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆ shows considerable lability in solution at 25 \degree C as demonstrated by ¹H NMR spectroscopy. Thus, the spectrum of $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆ in CD₃CN shows two signals: that of C_5H_5 at τ 3.84 and of free CH₃CN at τ 7.80, indicating complete conversion to $[\eta^5$ -C₅H₅Cr(NO)₂-

⁽⁸⁾ **Beck,** W.; Schloter, **K.** *Z. Naturforsch. B Anorg. Chem., Org. Chem.* **1978,** *33B,* **1214.**

Cyclopentadienylchromium-Nitrosyl Complexes

 (CD_3CN)]PF₆. The spectrum in acetone- d_6 consists of four resonances which are assigned to C_5H_5 (τ 3.84) and CH₃CN $(\tau$ 7.40) of $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆, C₅H₅ (τ 3.80) of $\{ \eta^5$ -C₅H₅Cr(NO)₂[(CD₃)₂CO]}PF₆, and free CH₃CN (τ 7.93). The equilibrium mixture of the two cationic species contains more than 60% of the CH₃CN complex. Finally, the spectrum of $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆ in CD₃NO₂ shows only the two resonances of the dissolved complex (Table I), indicating that no ligand exchange has occurred.

The complex $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆ serves as a convenient precursor of a variety of cationic complexes, $[\eta^5$ -C₅H₅Cr(NO)₂L]PF₆. These conversions are accomplished in 70-85% yield by stirring a solution of $[\eta^5{\text{-}}C_5H_5Cr(NO)_2{\text{-}}$ (CH_3CN)]PF₆ and excess L in CH₃NO₂ at 25 °C (eq 5). spectrum of $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆ in CD₃NC
shows only the two resonances of the dissolved complex (Tab
I), indicating that no ligand exchange has occurred.
The complex $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)

$$
[\eta^{5}\text{-}C_{5}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6} + L \xrightarrow{CH_{3}NO_{2}}
$$

$$
[\eta^{5}\text{-}C_{5}H_{5}Cr(NO)_{2}L]PF_{6} + CH_{3}CN (5)
$$

Successfully prepared in this fashion were the complexes incorporating $L = an$ aromatic amine $(C_6H_5NH_2, p-)$ $CH_3C_6H_4NH_2$, p-ClC₆H₄NH₂), pyridine $(C_5H_5N, 4 CH_3C_5H_4N$, and organic isocyanide (CH₃NC). However, attempts at introducing $L = P(C_6H_5)$ ₃ and $P(C_2H_5)$ ₃ under comparable reaction conditions resulted in complete decomposition of the η^5 -C₅H₅Cr(NO)₂ moiety. CH₃C₆H₄NH₂, p-ClC₆H₄NH₂), pyridine (
CH₃C₅H₄N), and organic isocyanide (CH₃NC)
attempts at introducing L = P(C₆H₅)₃ and P(C
comparable reaction conditions resulted in comp
position of the η^5

Another synthetic route to $[\eta^5 - C_5 H_5 Cr(NO)_2 L]PF_6$ utilizes η^5 -C₅H₅Cr(NO)₂FPF₅ in conjunction with L, also in CH₃NO₂ at 25 \degree C (eq 6). Compared to the first-mentioned method,

$$
\eta^{5} \text{-} C_{5}H_{5}Cr(NO)_{2}FPF_{5} + L \xrightarrow{CH_{3}NO_{2}}
$$

$$
[\eta^{5} \text{-} C_{5}H_{5}Cr(NO)_{2}L]PF_{6}
$$
(6)
$$
L = C_{6}H_{5}CN, p\text{-} CH_{3}C_{6}H_{4}NH_{2}, C_{6}H_{11}NC
$$

it suffers from the somewhat lower yields of 50-60% but has the advantage of cleanly affording the cationic complexes containing ligands of a wider range of basicity, including lower than or comparable to that of CH₃CN, viz., $[n^5-C_5H_5Cr (NO)₂(C₆H₅CN)$]PF₆. However, the very weak bases CO and styrene failed to react with η^5 -C₅H₅Cr(NO)₂FPF₅ under similar conditions.

The new complexes $[\eta^5$ -C₅H₅Cr(NO)₂L]PF₆ are stable to air in the solid state and moderately stable in solution. They were characterized by elemental analysis, molar conductance, and infrared and 'H NMR spectroscopy, as shown in Table I. The values of Λ_m in CH₃NO₂ solution fall in the range $85-101 \Omega^{-1}$ cm² mol⁻¹, being consistent with the presence of 1:1 electrolytes.⁹ The infrared $\nu(NO)$ absorptions at 1862-1831 and 1757-1731 cm^{-1} are, as expected for cations $[\eta^5$ -C₅H₅Cr(NO)₂L]⁺, somewhat higher than those of the neutral species η^5 -C₅H₅Cr(NO)₂X (X = Cl, Br, I, NCS, NO₂, NO₃), the latter occurring at 1827-1810 and 1723-1695
cm⁻¹.^{6,10-12} The resonance of the C_tH_s protons in $\lceil n^5 - \rceil$ The resonance of the C₅H₅ protons in $[\eta^5]$ - $C_5H_5Cr(NO)_2L]PF_6$ at τ 3.80-4.03 experiences the usual downfield shift when compared with the corresponding signal of the above-listed neutral η^5 -C₅H₅Cr(NO)₂X, which occurs in the range τ 4.12-4.28.^{11,12} A noteworthy feature in the ¹H NMR spectrum of $[r^5-C_5H_5Cr(NO)_2(CH_3NC)]PF_6$ is the occurrence of the CH₃ signal as a triplet $(J_{N-H} = 2.2 \text{ Hz})$. This value agrees well with those reported in the literature for some transition metal-CH₃NC complexes.¹³⁻¹⁵

(9) Geary, W. J. Coord. Chem. Rev. 1971, 7, 81.
(10) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 2, 38.
(11) King, R. B.; Bisnette, M. B. Inorg. Chem. 1964, 3, 791.
(12) Hames, B. W.; Legzdins, P.; Martin, D. T

Interestingly, the amine complexes $[\eta^5$ -C₅H₅Cr(NO)₂L]PF₆, where $L = C_6H_5NH_2$, $p\text{-}CH_3C_6H_4NH_2$, and $p\text{-}ClC_6H_4NH_2$, readily exchange their NH₂ protons for deuterium during storage in acetone- d_6 solution at 25 °C for 12 h. This exchange was readily ascertained by noting that the infrared $\nu(NH_2)$ bands of the dissolved complex disappeared and the corresponding $\nu(ND_2)$ bands appeared in the complex isolated from acetone- d_6 . The appropriate data are provided in Table I.

Synthesis and Characterization of $[\eta^5$ -C₅H₅Cr(NO)(L-**L)JPF₆.** The complex $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)**JPF**₆ undergoes substitution reaction with bidentate N-donor ligands, bpy and phen $(L-L)$, in $CH₃NO₂$ at reflux to afford the 17electron products $[\eta^5$ -C₅H₅Cr(NO)(L-L)]PF₆ in 70-75% yield *(eq* 7). These red-brown solids are air stable. Consistent with ightharpoonly the approximation of $[\eta^5$ -C₅H₅Cr(NO)₂ (CH₃CN)² (PH₃Cr(NO)² (CH₃CR)² (C

$$
[\eta^{5}\text{-}C_{5}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6} + L-L \xrightarrow{CH_{3}NO_{2}} [\eta^{5}\text{-}C_{5}H_{5}Cr(NO)(L-L)]PF_{6} + NO + CH_{3}CN \quad (7)
$$

the proposed formulations, they exhibit magnetic moments that show the presence of one unpaired electron and molar conductance that is typical of $1:1$ electrolytes.⁹ In their infrared spectra, a single $\nu(NO)$ absorption occurs at 1690 cm⁻¹. The position of this band relates well to that at 1669 cm^{-1} for the previously synthesized 17-electron neutral complexes *q5-* $C_5H_5Cr(NO)(L)Cl$, where $L = C_5H_5N$ and 4-CH₃C₅H₄N.¹⁶ However, it surprisingly occurs at a considerably lower frequency than the corresponding absorption at 1748-1749 cm⁻¹ (in CH_2Cl_2 solution) of the 18-electron $[(\eta^5-C_5H_4CH_3)Mn (NO)(L-L)]PF_6 (L-L = bpy, phen).¹⁷$ The opposite would be predicted if the 18th electron resides in an orbital that is involved in π back-bonding with the nitrosyl ligand. For the same oxidation state of the metal, a d^6 system (i.e., $Mn(I)$, with the nitrosyl as NO⁺) should π back-bond more effectively than the corresponding d^5 system (i.e., $Cr(I)$). Thus the former should exhibit more extensive $M-NO \pi$ bonding and consequently a lower value of $\nu(NO)$ than the latter.

Reactions of $[\eta^5$ **-C₅H₅Cr(NO)₂(CH₃NC)]PF₆ with Nucleophiles.** Reactions of the title compound with several "hard" nucleophiles were carried out to establish whether attack would occur at NO or at $CH₃NC$. Both ligands are known to engage in such reactions, especially when present in a cationic complex.^{18,19}

⁽¹⁵⁾ Yamamoto, Y.; Yamazaki, H. *J.* Coord. *Chem.* **1977,** *6,* 241.

⁽¹⁶⁾ Fischer, E. 0.; Strametz, H. J. *Organomet. Chem.* **1967,** *10,* 323. (17) James, T. A.; McCleverty, J. **A.** *J. Chem. SOC. A* **1970,** *850.*

Scheme I summarizes our results. Treatment of $\lceil \eta^{5} \rceil$ $C_5H_5Cr(NO)_2(CH_3NC)$]PF₆ with NaOCH₃ in CH₃OH resulted in the formation of η^5 -C₅H₅Cr(NO)₂[C(OCH₃)NCH₃]. This neutral product could not be induced to crystallize and, because of its thermal instability, was characterized only spectroscopically. The position of the infrared $\nu(NO)$ bands and the 'H NMR spectrum, both given in Table I, support the proposed structure that derives from attack of methoxide at the isocyanide carbon.

Protonation with $HPF_6(C_2H_5)_2O$ of $\eta^5-C_5H_5Cr(NO)_2[C (OCH₃)NCH₃]$ in $CH₂Cl₂$ solution occurred at the NCH₃ nitrogen to yield $\{\eta^5 - C_5H_5Cr(NO)_2[COCH_3]NHCH_3]\}PF_6$ as a stable, crystalline solid. This methoxy(methy1amino) carbene complex also resulted from reaction of $[\eta^5$ -C₅H₅Cr- $(NO)₂(CH₃NC)$]PF₆ with CH₃OH in the presence of trace amounts of NaOCH₃. However, no reaction occurred in the absence of $NaOCH₃$. Thus, methoxide must be the reactive nucleophile, and the resulting neutral complex η^5 -C₅H₅Cr- $(NO)_2[CCCH_3]NCH_3]$ then undergoes protonation by the CH₃OH solvent.

The protonated product was characterized by elemental analysis, molar conductance, which shows it to be a 1:l electrolyte,⁹ and infrared and ¹H NMR spectroscopy. The infrared spectrum shows a $\nu(NH)$ band at 3384 cm⁻¹ and two $\nu(NO)$ absorptions in the range appropriate for these cationic dinitrosyl complexes. In the ${}^{1}H$ NMR spectrum, the resonances of the C_5H_5 , OCH₃, and NCH₃ groups are, as expected, downfield from the corresponding signals of neutral η^5 - $C_5H_5Cr(NO)_2[C(OCH_3)NCH_3]$

Similarly prepared, by using $NaOC₂H₅$ in $C₂H₅OH$ followed by protonation, was the ethoxy analogue of the aforementioned carbene complex. Obtained as an oil, $\{n^5-\}$ $C_5H_5Cr(NO)_2[COC_2H_5)NHCH_3]$ ^{PF₆ could not be induced} to crystallize and was characterized only spectroscopically (Table I).

Treatment of $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃NC)]PF₆ with KOH in CH₃CN at 25 °C afforded unstable η^5 -C₅H₅Cr(NO)₂[C-(0)NHCH3], which was characterized spectroscopically in solution. This carbamoyl complex results from attack of hydroxide at the isocyanide carbon, followed by a tautomeric proton shift to the more basic nitrogen. The proposed formulation receives support from the infrared $\nu(NO)$ absorptions at 1790 and 1684 cm⁻¹ and the ν (C=O) band at 1657 cm⁻¹. The 'H NMR spectrum shows all of the hydrogens at the expected positions and with the appropriate intensities.

Addition of $HPF_6(C_2H_5)_2O$ to a solution of the carbamoyl complex in CH_3NO_2 resulted in the formation of $[\eta^5]$ - $C_5H_5Cr(NO)_2(CO)]PF_6$, which had previously been prepared, via a different route, by Fischer.² The infrared spectroscopic data in Table I match well with the literature values.

The carbonyl ligand in $[\eta^5$ -C₅H₅Cr(NO)₂(CO)]PF₆ undergoes substitution by CH₃CN to yield $[\eta^5$ -C₅H₅Cr(NO)₂- $(CH_3CN)]PF_6$. Accordingly, a solution of $[\eta^5-C_5H_5Cr$ - $(NO)_2(CO)$]PF₆ and a 12-fold excess of CH₃CN in CD₃NO₂ in a capped 'H NMR tube showed a higher than 80% conversion to $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆ in 84 h. By comparison, the corresponding $[\eta^5$ -C₅H₅M(NO)₂(CO)]PF₆ (M = M_0 , W) complexes react very rapidly with CH_3CN at room

The foregoing reactions (Scheme I) parallel closely those reported for cationic square-planar platinum(I1) isocyanide complexes, $[Pt(PR₃)₂(CH₃NC)₂]X₂^{20,21}$ However, the

- ~- (18) Bottomley, F. *Acc. Chem. Res.* **1978,** 11, 158 and references cited therein.
- (19) Treichel, P. M. *Adu. Orgonomet. Chem.* **1973,** *11,* **21** and references cited therein. **(20)** Treichel, P. **M.;** Knebel, W. J.; **Hess,** R. W. *J. Am. Chem. SOC.* **1971,**
- *93,* **5424.**
- (21) Treichel, P. M.; Knebel, W. J. *Inorg. Chem.* **1972,** *11,* **1285.**

platinum compounds also undergo similar nucleophilic attack by SH⁻ and C₆H₅NH⁻. Attempts at reaction of $[\eta^5$ - $C_5H_5Cr(NO)_2(CH_3NC)$]PF₆ with NaHS in CH₃CN and $KNHC₆H₅$ in THF at 25 °C resulted in complete destruction of the η^5 -C₅H₅Cr(NO)₂ moiety. A similar decomposition occurred when $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃NC)]PF₆ was treated with $(CH_3)_2NH$ in CH₃CN at room temperature. It is not known whether these decomposition reactions proceed by attack of the nucleophile at ligated NO or $CH₃NC$.

Experimental Section

General Procedures and Measurements. All reactions and manipulations were routinely carried out under purified nitrogen. Analyses were done by Galbraith Laboratories, Inc., Knoxville, TN.

'H and **I9F** NMR spectra were recorded on a Varian Associates EM360L spectrometer using Me4Si as an internal reference for the former and CF_3CO_2H as an external reference for the latter. Infrared spectra were obtained on a Perkin-Elmer Model 337 spectrophotometer and were calibrated with polystyrene. Molar conductance was measured on ca. 10^{-3} M solutions by using a Lab-Line No. 11200 beaker-type conductivity cell in conjunction with an Industrial Instruments, Inc., Model RC 16B2 conductivity bridge. Paramagnetic susceptibilities were determined by the method of Evans²² on ca. 10^{-3} M solutions in $CH₃NO₂$. Mass spectra were recorded on a DuPont Instruments 21-490 spectrometer connected to a Perkin-Elmer 990 gas chromatograph.

Materials. All solvents were of reagent grade quality and were purified further by the methods described by Perrin et al.²³ prior to use. Commercially procured reagents were used as received except for $p\text{-CH}_3C_6H_4NH_2$ (30 °C), $p\text{-ClC}_6H_4NH_2$ (50 °C), 1,10phenanthroline (phen) (50 °C), and 2,2'-bipyridine (bpy) (50 °C) which were sublimed in vacuo at the indicated temperatures, for $C_6H_5NH_2$ (65 °C/18 torr), C_5H_5N (115.6 °C/760 torr), and 4- $CH_3C_5H_4N$ (145 °C/760 torr) which were dried over KOH and distilled as indicated, and for C_6H_5CN which was dried over P_4O_{10} and distilled at 69 \degree C/10 torr.

Literature procedures were employed to synthesize CH₃NC,
C_{cH}, NC²⁵ n^3 -C_{cH},Cr(NO)₂Cl²⁶ and n^5 -C_{cH},Cr(NO)₂CH,²⁷

Preparation of $[\eta^5$ **-C₅H₅Cr(NO)₂(CH₃CN)]PF₆. A. By Reaction of** η^5 **-C₅H₅Cr(NO)₂Cl with AgPF₆.** A solution containing 1.67 g (6.6) mmol) of AgPF₆ in 75 mL of CH₃CN was treated with 1.40 g (6.6) mmol) of η^5 -C₅H₅Cr(NO)₂Cl, and the resulting mixture was stirred at 25 °C for 12 h. The green solution was filtered, the solvent was removed from the filtrate, the residual oil was extracted with 3×20 mL of CHCl₃, and the brown extracts were discarded. The residue was dried in vacuo and redissolved in CH₃CN, and this solution was filtered and concentrated to 5-7 mL. Chloroform was added, and the resulting solution was stored at -78 °C for 4 h. Crystalline $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ (1.85 g, 77% yield) was collected on a frit, washed with CHCl₃, and dried in vacuo.

B. By Reaction of $\eta^5C_5H_5Cr(NO)_2CH_3$ with $HPF_6(C_2H_5)_2O$ in **CH₃CN.** To a solution containing 0.50 g (2.6 mmol) of η^5 - $C_5H_5Cr(NO)_2CH_3$ in 50 mL of CH₃CN was added 0.50 mL $(3.0$ mmol) of $HPF_{6} (C_2H_5)_2O$, and the resulting mixture was stirred at 25 "C for 20 min. A mass spectrometric analysis of collected gases showed the presence of CH4. The green solution was filtered, concentrated to 1-2 mL by rotary evaporation, and treated with 20 mL of CHCl₃. Storage at -78 °C for 4 h induced crystallization of 0.75 g (80% yield) of η ⁵-C₅H₂Cr(NO)₂(CH₃CN)]PF₆, which was collected on a frit, washed with liberal portions of CHCl₁, and dried in vacuo.

temperature also to give $\left[\eta^5 - C_5H_5M(NO)_2(CH_3CN)\right]PF_6.$ ⁶ wherever we heated with 0.10 mL (0.00 mmol) of $\pi FF_6(C_2H_5)2C$. the reaction mixture was stirred at 25 °C for 6 h, during which time a **Preparation of** η^5 **-C₅H₅Cr(NO)₂FPF₅. A solution containing 0.10** g (0.52 mmol) of η^5 -C₅H₅Cr(NO)₂CH₃ in 25 mL of ether in a 100-mL round-bottom flask equipped with a nitrogen inlet and a Schlenk filter tube was treated with 0.10 mL (0.60 mmol) of $HPF_{6}(C_2H_5)_2O$. the green precipitate formed. This solid was collected on a frit, washed

- **(22)** Evans, **D. F.** *J. Chem. SOC.* **1959,** 2003.
- **(23)** Perrin, **D. D.;** Armarego, W. L. F.; Perrin, D. R. "Purification of Laboratory Chemicals"; Pergamon Press: Oxford, England, 1966.
- **(24)** Casanova, **J., Jr.;** Schuster, R. E.; Werner, N. D. *J. Chem. SOC.* **1963, 4280.**
- **(25)** Hertler, W. R.; Corey, E. J. *J. Org. Chem.* **1958, 23,** 1221.
- (26) King, R. B. "Organometallic Syntheses"; Academic Press: New York, 1965; Vol. 1, p 161.
(27) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 3, 104.
-

with liberal portions of ether, and dried in vacuo. A mass spectrometric analysis of gases above the reaction mixture showed the presence of $CH₄$.

Preparation of $[\eta^5$ -C₅H₅Cr(NO)₂L]PF₆. A. By Reaction of $[\eta^5$ p-CIC6H4NH2, C5H5N, 4-CH3C5H4N, CH3NC). A solution of **0.2-1** *.O* **g** (0.55–2.7 mmol) of $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃CN)]PF₆ and a twofold to threefold excess of L in **25-75** mL of CH3N02 was stirred at **25** ^oC for ca. 12 h. Solvent was removed from the reaction mixture, the residue was dissolved in a minimum amount of acetone, and the resulting solution was filtered and treated with **20-30** mL of CHC13. Storage at -78 °C for 4-12 h afforded $[\eta^5$ -C₅H₅Cr(NO)₂L]PF₆ as green crystals which were collected on a frit, washed with CHCl₃, and dried in vacuo. The yield was **70-85%.** $C_5H_5Cr(NO)_2(CH_3CN)$ $\tilde{P}\tilde{F}_6$ with $\tilde{L}(L = C_6H_5NH_2, p\text{-}CH_3C_6H_4NH_2,$

B. By Reaction of η^5 -C₅H₅Cr(NO)₂FPF₅ with L (L = C₆H₅CN, p -CH₃C₆H₄NH₂, C₆H₁₁NC). Freshly prepared η^5 -C₅H₅Cr(NO)₂FPF₅ was dissolved in $CH₃NO₂$, and the resulting solution was treated with excess L and stirred at **25** "C for **12** h. The rest of the procedure was identical with that of method A. The yield was **50-60%.**

Preparation of $[\eta^5$ **-C₅H₅Cr(NO)(L-L)]PF₆ (L-L = phen, bpy). A** solution of 0.30 g (0.82 mmol) of $[\eta^5 \text{-} C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ and a slight excess of L-L in 30 mL of CH₃NO₂ was kept at reflux for **4** h, during which time it changed from green to red-brown. Solvent was removed at 25 °C, the residue was dissolved in acetone, and the resulting solution was filtered and concentrated to ca. *5* mL. Treatment with **20** mL of CHCl,, followed by slow evaporation of the solvent, afforded a red-brown precipitate which was collected on a frit, washed with CHCl₃, and dried in vacuo. The yield was 70-75%.

Preparation of η^5 **-C₅H₅Cr(NO)₂[C(OCH₃)NCH₃]. To a solution** containing 0.20 **g** (0.55 mmol) of $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃NC)]PF₆ in **20** mL of CH30H was added **¹***.O* mL of **¹***.O* M **(1** *.O* mmol) NaOCH3 in CH30H. The mixture was stirred at **25** "C for **12** h, during which time it changed from green to gold. Solvent was removed, and the residue was cooled to -78 °C to prevent decomposition. It was then extracted with 10-mL portions of CH_2Cl_2 at 25^{\degree}C until the extracts became colorless. The extracts were combined, filtered, and freed of solvent to afford the title complex as a gold oil. Attempts at crystallization at ambient temperatures proved unsuccessful, owing to thermal instability of the complex.

Preparation of $\{\eta^5\text{-}C_5H_5Cr(NO)_2[COCH_3]NHCH_3]\}PF_6$ **.** The filtered extracts containing η^5 -C₅H₅Cr(NO)₂[C(OCH₃)NCH₃] from the preceding preparation were treated with 0.10 mL **(0.60** mmol) of $HPF_6(C_2H_5)_2O$ as the color changed from gold to green. The resulting solution was filtered and concentrated, and cyclohexane was added to induce precipitation of a green solid. The crude product was recrystallized from acetone-ether. The yield was **0.18 g (83%** on the basis of $[\eta^5$ -C₅H₅Cr(NO)₂(CH₃NC)]PF₆).

Preparation of $\{ \eta^5$ **-C₅H₅Cr(NO)₂[C(OC₂H₅)NHCH₃]}PF₆. This** complex was prepared by a procedure strictly analogous to that for its OCH₃ analogue by using C₂H₅OH and NaOC₂H₅ in place of $CH₃OH$ and NaOCH₃. The product was isolated as a green oil which could not be induced to crystallize.

Preparation of η^5 **-C₅H₅Cr(NO)₂[C(O)NHCH₃]. To a solution** containing 0.20 g (0.55 mmol) of $[\overline{\eta}^5\text{-}C_5H_5Cr(NO)_2(CH_3NC)]PF_6$ in 30 mL of CH₃CN was added 10 mL of aqueous 0.10 M (1.0 mmol) KOH. The mixture was stirred at 25 °C for 1 h, during which time it changed from green to red-brown. Solvent was removed, and the residue was cooled to -78 °C and extracted with CH₂Cl₂ at 25 °C until the extracts became colorless. The extracts were combined, filtered, and freed of solvent to yield a red-brown powder, which was spectroscopically characterized as the title complex. The product decomposed during attempts at crystallization at ambient temperatures.

Preparation of $[\eta^5{\text -}C_5H_5Cr(NO)_2(CO)]PF_6$ **.** The product from the preceding reaction was dissolved in 15 mL of $CH₃NO₂$, and the resulting solution was treated with 0.20 mL (1.2 mmol) of HPF₆. $(C_2H_5)_2$ O and stirred at 25 °C for 1 h as the color changed from red to green. Solvent was removed, and the residue was washed with **15** mL of $H₂O$ and dried in vacuo. The crude product was recrystallized from acetone-ether to yield **0.04 g (20%** on the basis of *[v5-* $C_5H_5Cr(NO)_2(CH_3NC)]PF_6$) of $[\eta^5-C_5H_5Cr(NO)_2(CO)]PF_6$.

Acknowledgment. We are grateful to the National Science Foundation for support of this research through Grant **CHE-7911882.**

Registry No. $\left[\eta^5\text{-}C_5H_5\text{Cr}(\text{NO})_2(\text{CH}_3\text{CN})\right]$ PF₆, 74924-59-7; η^5 -C5H5Cr(N0)2FPF~, **74924-60-0; [115-C~H~Cr(NO)~(C6H5NH2)]PFs, 74924-62-2; [?5-C5H5Cr(NO)2@-CH3C6H4NH2)]PF6, 74924-64-4;** $[\eta^5\text{-}C_5H_5Cr(NO)_2(C_5H_5N)]PF_6$, 74858-44-9; $[\eta^5\text{-}C_5H_5Cr(NO)_2(4-V_5)$ PF₆, 74924-68-8; η ⁵-C₅H₅Cr(NO)₂[C(OCH₃)NCH₃], 74924-69-9; $[\eta^5-C_5H_5Cr(NO)_2[C(OCH_3)NHCH_3]]PF_6$, 74924-71-3; $[\eta^5$ -C₅H₅Cr(NO)₂[C(OC₂H₅)NHCH₃]]PF₆, 74924-73-5; η ⁵-C₅H₅Cr- $(NO)_2[C(O)NHCH_3]$, 74924-74-6; $[\eta^5 \text{-} C_5H_5Cr(NO)_2(CO)]PF_6$, **69439-82-3;** $[\eta^5$ -C₅H₅Cr(NO)₂(C₆H₁₁NC)]PF₆, 74924-76-8; $[\eta^5$ - $C_5H_5Cr(NO)(phen)$] PF₆, 74924-78-0; $[\eta^5-C_5H_5Cr(NO)(bpy)]$ PF₆, 74924-80-4; η ⁵-C₅H₅Cr(NO)₂Cl, 12071-51-1; η ⁵-C₅H₅Cr(NO)₂CH₃, 53522-59-1; $[\eta^5$ -C₅H₅Cr(NO)₂(C₆H₅CN)]PF₆, 74924-82-6; $[\eta^5$ -C5H5Cr(NO)z(CH3NC)]PF6, **74924-84-8.** $CH_3C_5H_4N$]PF₆, 74924-66-6; [η ⁵-C₅H₃Cr(NO)₂(p-ClC₆H₄NH₂)]-

Contribution from the Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadakami, Suita-shi, Osaka-fu **565,** Japan

Crystal Structure of Europium(I1) Bromoborate

KEN-ICHI MACHIDA, GIN-YA ADACHI,' NORITAKE YASUOKA, NOBUTAMI KASAI, and JIRO SHIOKAWA

Received March 18, 1980

Needlelike single crystals of Eu₂B₅O₉Br were grown from the molten sample containing a large excess of EuBr₂ as a flux. The crystal structure was determined from three-dimensional X-ray diffraction data *(R* = **0.047** for **1979** observed reflections, with anisotropic thermal parameters for Eu and Br atoms). The bromoborate $Eu_2B_3O_9Br$ is isostructural with the Ca analogue. The crystal belongs to the orthorhombic (pseudotetragonal) system, of space group **Pnn2,** with four formula units in a cell of dimensions $a = 11.503$ (3), $b = 11.382$ (3), and $c = 6.484$ (2) Å. The structure consists of a three-dimensional (B₅O₉)_n, network, in which B_5O_{12} groups of three BO_4 tetrahedra and two BO_3 triangles are linked together by sharing cornered oxygens. The Eu and Br atoms are located in tunnels of the (B_5O_9) _∞ network extending along the *c* axis. Each Eu atom is surrounded by two Br atoms and seven 0 atoms with interatomic distances from **3.009** to **3.093 A** and from **2.526** to **3.061 A,** respectively.

Introduction

Divalent europium (Eu²⁺) containing compounds have been investigated because of their magnetic¹⁻³ and spectroscopic⁴

⁽¹⁾ Matthias, B. T.; Bozorth, R. **M.;** Van Vleck, J. H. *Phys. Reu. Lett.* **1961, 7, 1960.**

⁽²⁾ Suits, J. C.; Lee, K. *J. Appl. Phys.* **1971,** *42,* **3258.**

⁽³⁾ Fan, **G.;** Burn, R. A. J. *Appl. Phys.* **1971,** *42,* **3458.**

⁽⁴⁾ (a) Blasse, G.; Bril, A. *Philips Tech. Rev.* **1970,** *31,* **304. (b)** Blasse, **G.** *Struct. Bonding (Berlin)* **1976,** *26,* **43-79.**